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Abstract. In  this paper we present a study of the restrictions imposed upon the motion of 
particles (material particles and photons) in the gravitational field of a rotating cylinder. 

1. Introduction 

The emission of photons from spherical bodies has been studied by Synge (1966). 
Motions of particles in a Kerr field have been investigated in detail by De Felice and 
Calvani (1972). Banerjee (1968) and Krori and Chaudhury (1978) have studied the 
2;cape of photons from cylindrical bodies. The study in the cylindrical case will not be 
complete without an investigation on the restrictions caused to the motions of particles 
(material particles and photons) by the rotation of cylindrical bodies about their axes. 
We have taken up this investigation in this paper. 

2. Detailed calculations 

First, we show that the velocity of a particle in the field of a rotating cylinder receives a 
contribution from the angular velocity d4/dt, where 4 is a coordinate angle (see 
equation (6)). 

Landau and Lifshitz (1971) have shown that the total energy of a particle of proper 
mass mo in a static gravitational field is given by 

E = moc2goo(goo dt2-d12)-”2 dt (1) 

where c is the velocity of light in empty gravitation-free space, goo the (00)-component 
of the metric tensor and dl an invariant infinitesimal element of spatial displacement. 

If we introduce the velocity 

of the particle, measured in terms of the proper time, that is, by an observer located at a 
given point, then we obtain for the energy, 

Landau and Lifshitz have also shown that the expression (3) remains valid for a 
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stationary gravitational field if z1 is given by 

In terms of Jgoo(0)d t ,  the proper time of an observer 0 located at x"(O), the 
expressions (3) and (4) give for the velocity 

where K = E/moc2. 

about its axis 
Lewis (1932) has given the following line-element for an infinite cylinder rotating 

d s 2 =  f dt2--p(dr2+dz2)- l  d ~ $ ~ + 2 m  dC$ dt (6 1 
where f, p, 1 and m are given by the expressions 

Here D and k are constants related to mass per unit length of the cylinder and o 
represents its angular velocity. 

The expression for the velocity of material particles in the field is given from (5) by 

Equation (8) shows that the velocity of a material particle in the field of a rotating 
cylinder receives a contribution from the angular velocity d4/dt. This statement may 
easily be seen to hold for photons also. 

Next we consider the geodesic equations for particles in this field. They are 

fi2 - p ( i 2  + i2)- / Q 2  + 2mQi = 6, 

2 +-ii = 0, P' 
P 

where dots represent differentiation with respect to s for material particles and with 
respect to an affine parameter for photons while primes refer to differentiation with 
respect to r. 6 = +1 for material particles and S = 0 for photons. 

The first integrals of the above equations may be easily obtained by a technique due 
to Adler et a1 (1975) as follows: 

(9) fi' - p ( i 2  + i 2)-  lQ2 + 2mQi = 6, 
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f i  + m&, = A ,  (10) 

p i  = B, (11) 

- m i + / d  = C (12) 
where A ,  B and C are constants of  integration. A and C represent respectively the 
total energy and the total angular momentum of the test particle. 

From (10) and (12), 

For the trajectory of the particles in a constant z plane, we will have to integrate the 
equation, 

6r4 1 (15) 
1 (Al-Cm)' (A1 - Cm) 

-1+2m (-$) ' = P - [ f (Am+Cf)' (Am + C f ) - ( A m  + Cf)' 

Table 1. ( rc  is the upper or lower limit (cut-off value) of ro)  
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obtained by using equations (S), (13) and (14). For circular orbits, we have from this 
equation 

(1 6) 
For a general trajectory, it seems difficult to integrate equation (15). We can, however, 
obtain restrictions imposed upon the motion of particles in a Lewis field in an 
alternative way as follows. 

f (AI - Cm )’ - /(Am + Cf)’ + 2m (A1 - Cm )(Am + Cf) - Sr4 = 0. 

At the turning point ro (i = 0) in a constant z plane, (9) reduces to 

f o i 2  - l0d2 + 2modi = S. 

Putting (13) and (14) in the above equation, we get, 

C2fo+2ACmo+(Sr; -A210)=0. (17) 

Substituting for mo and fo from (7) and (17), we get 
2 2 k  2 2 - 2 k  1/2  -Ay2w(rg-2k -dk)fr0[A2-6y ( r o  -6.1 ro )] C, = 2 2 k  y ( r o  -a2r i -2k)  , 

where y 2  = (1 -a2))-’. C, and C- represent angular momentum of the text particle at 
the turning point ro. 

We now consider variations of C+ and C- for (i) material particles (6 = +1)  with 
A’> 1 and A’< 1, (ii) photons (6 = 0). Such variations are considered for various 
values of k and a and for this purpose we make use of table 1.  It should be noted that 
since we are interested only in the restriction caused to the motion of particles in a 
cylindrically symmetric stationary gravitational field, we draw the curves only broadly 
(not exactly). Continuous curves are for material particles while the dotted ones are for 
photons. 

Figure 1. k >$with w < 1 and k < f with w > 1 for material particles (Az > 1 )  and photons. 
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Figure 2. k < f with w < 1 and :< k < 1 with w > 1 for material particles ( A z >  1) and 
photons. 

Figure 3. k = 1 with w > 1 for material particles (A2 > 1) and photons. 
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Figure 4. k > 1 with w > 1 for material particles (A2> 1) and photons. 

Figure 5. k = 1 with w 4 1 and k = with w > 1 for material particles (A2 > 1) and photons. 

3. Discussion 

First, we would like to point out that in our analysis particles are restricted to regions 
where 

C2f +2ACm + 6 r 2  -A21 + p r 2 i 2  = 0 (19) 
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Figure 6. k > 4 with w > 1 and k < i with w < 1 
for material particles (A* < 1) only. 

Figure 7. k = +  with w <  1 and k =$ with w >  1 
for material particles ( A ~  < I) only. 

holds. This equation shows that for a given value of r, particles will have C as follows: 

C+>C>C- forf>O, (20) 

These regions have been shaded with continuous lines for material particles and with 
dashes for photons in all the figures. 

If us is the proper frequency of light emitted by a source at rest at xf  and uo is the 
frequency of the light observed at xc, then these two frequencies are related by the 
equation (Adler et a l )  

U0 = u , [ g o o ~ x f ~ / g o ~ ~ ~ ~ ~ l ” 2 .  (22) 
Obviously the surface r = y 1  (where goo(xf) i.e., f is zero) is one of infinite redshift. I t  is 
easy to check that this is not a null hypersurface; the normal vector and its norm are 
respectively 

n, = (0,1,0,0>, (23) 

nun, = -1/p (24) 
Since the norm is clearly negative, the infinite red-shift surface will pass material 
particles in both directions and is not therefore a one-way membrane like the Schwarz- 
schild surface (see Adler er al ) .  

Finally, we draw some conclusions from the figures. 

(i) Materialparticles. Figures 1 ,2 ,5 ,6  and 7 show that material particles cannot escape 
from the field of the rotating cylinder. They are trapped. The possibility of escape 
appears in figures 3 (for A2 > 1, k = 1 with w > 1) and 4 (for A2 > 1, k > 1 with w > 1) 
only. In these cases, particles may approach the cylinder from infinity also. 

(ii) Photons. The possibility for escape of photons from the field of a rotating cylinder is 
shown in all the relevant figures (i.e., Figures 1-5). However, this possibility is 
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restricted only to values of C close to /3 in figure 1 and between (Y and ,G in figure 5 .  In 
all these cases, photons may approach the cylinder from infinity also. 
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